Wednesday, February 1, 2017

Moyenne Mobile De Deuxième Ordre

Dans la deuxième colonne de ce tableau, une moyenne mobile de l'ordre 5 est affichée, fournissant une estimation du cycle tendanciel. La première valeur dans cette colonne est la moyenne des cinq premières observations (1989-1993), la deuxième valeur dans la colonne 5-MA est la moyenne des valeurs 1990-1994 et ainsi de suite. Chaque valeur dans la colonne 5-MA est la moyenne des observations sur la période quinquennale centrée sur l'année correspondante. Il n'y a aucune valeur pour les deux premières années ou les deux dernières années parce que nous n'avons pas deux observations de part et d'autre. Dans la formule ci-dessus, la colonne 5-MA contient les valeurs de hat avec k2. Pour voir à quoi ressemble l'estimation du cycle tendanciel, nous la traçons avec les données originales de la figure 6.7. Parcelle 40 elecsales, principale quotResidential ventes d'électricité, ylab quotGWhquot. Notez comment la tendance (en rouge) est plus lisse que les données d'origine et capture le mouvement principal de la série chronologique sans toutes les fluctuations mineures. La méthode de la moyenne mobile ne permet pas d'estimer T où t est proche des extrémités de la série, de sorte que la ligne rouge ne s'étend pas aux bords du graphe de part et d'autre. Plus tard, nous utiliserons des méthodes plus sophistiquées d'estimation du cycle tendanciel qui permettent des estimations près des points finaux. L'ordre de la moyenne mobile détermine la finesse de l'estimation du cycle tendanciel. En général, un ordre plus grand signifie une courbe plus lisse. Le graphique suivant montre l'effet de la modification de l'ordre de la moyenne mobile pour les données sur les ventes résidentielles d'électricité. Les moyennes mobiles simples comme celles-ci sont ordinairement d'ordre impair (par exemple 3, 5, 7, etc.). C'est ainsi qu'elles sont symétriques: dans une moyenne mobile d'ordre m2k1, il y a k observations antérieures, k observations ultérieures et l'observation du milieu Qui sont moyennés. Mais si m était pair, il ne serait plus symétrique. Moyennes mobiles des moyennes mobiles Il est possible d'appliquer une moyenne mobile à une moyenne mobile. Une raison de faire ceci est de faire une moyenne mobile d'ordre pair symétrique. Par exemple, nous pourrions prendre une moyenne mobile de l'ordre 4, puis appliquer une autre moyenne mobile de l'ordre 2 aux résultats. Dans le tableau 6.2, cela a été fait pour les premières années de la production trimestrielle australienne de bière. Bière2 lt - fenêtre 40 ausbeer, début 1992 41 ma4 ltm 40 bière2, ordre 4. centre FALSE 41 ma2x4 ltm 40 bière2, ordre 4. centre VRAI 41 La notation 2x4-MA dans la dernière colonne signifie un 4-MA Suivi d'un 2-MA. Les valeurs de la dernière colonne sont obtenues en prenant une moyenne mobile de l'ordre 2 des valeurs de la colonne précédente. Par exemple, les deux premières valeurs dans la colonne 4-MA sont 451,2 (443410420532) 4 et 448,8 (410420532433) 4. La première valeur dans la colonne 2 x 4-MA est la moyenne de ces deux: 450,0 (451,2448,8) 2. Quand un 2-MA suit une moyenne mobile d'ordre pair (comme 4), il est appelé une moyenne mobile centrée de l'ordre 4. C'est parce que les résultats sont maintenant symétriques. Pour voir que c'est le cas, on peut écrire le 2x4-MA de la façon suivante: begin hat amp frac Bigfrac (y y y y) frac (y y y y) Big frac fray frac14y frac14y frac14y frac18y. End C'est maintenant une moyenne pondérée des observations, mais elle est symétrique. D'autres combinaisons de moyennes mobiles sont également possibles. Par exemple, on utilise souvent une MA 3 x 3, qui consiste en une moyenne mobile d'ordre 3 suivie d'une autre moyenne mobile d'ordre 3. En général, un ordre pair MA doit être suivi d'un ordre pair MA pour le rendre symétrique. De même, un ordre impair MA doit être suivi d'un ordre impair MA. Estimation du cycle tendanciel avec les données saisonnières L'utilisation la plus courante des moyennes mobiles centrées consiste à estimer le cycle tendanciel à partir des données saisonnières. Considérons le cas 2 x 4-MA: frac fray frac14y frac14y frac14y frac18y. Lorsqu'il est appliqué aux données trimestrielles, chaque trimestre de l'année reçoit le même poids que le premier et le dernier termes s'appliquent au même trimestre en années consécutives. Par conséquent, les variations saisonnières seront moyennées et les valeurs résultantes du chapeau auront peu ou pas de variation saisonnière restante. On obtiendrait un effet analogue en utilisant un mélange 2 fois 8-MA ou 2 fois 12-MA. En général, une m-MA de 2 x m est équivalente à une moyenne mobile pondérée d'ordre m1 avec toutes les observations pesant 1m sauf pour le premier et le dernier termes qui prennent des poids 1 (2m). Donc, si la période saisonnière est pair et d'ordre m, utilisez une m-MA 2 fois pour estimer le cycle-tendance. Si la période saisonnière est impaire et d'ordre m, utilisez un m-MA pour estimer le cycle de tendance. En particulier, un 2 x 12-MA peut être utilisé pour estimer le cycle tendanciel des données mensuelles et un 7-MA peut être utilisé pour estimer le cycle tendanciel des données quotidiennes. D'autres choix pour l'ordre de la MA entraîneront généralement des estimations du cycle de tendance étant contaminées par la saisonnalité dans les données. Exemple 6.2 Fabrication de matériel électrique La figure 6.9 montre une application de 2 x 12 mA appliquée à l'indice des ordres d'équipement électrique. Notez que la ligne lisse ne montre pas de saisonnalité, elle est presque identique au cycle de tendance illustré à la figure 6.2 qui a été estimé en utilisant une méthode beaucoup plus sophistiquée que les moyennes mobiles. Tout autre choix pour l'ordre de la moyenne mobile (à l'exception de 24, 36, etc.) aurait donné une ligne lisse qui montre certaines fluctuations saisonnières. Parcelle 40 elecequip, ylab QuotNouvelles commandes index. Col quotgrayquot, main Quot 41, 40 ma 40 elecequip, commande 12 41. col quotredquot 41 Moyennes mobiles pondérées Les combinaisons de moyennes mobiles se traduisent par des moyennes mobiles pondérées. Par exemple, la 2x4-MA discutée ci-dessus est équivalente à une pondérée 5-MA avec des poids donnés par frac, frac, frac, frac, frac. En général, un m-MA pondéré peut être écrit comme chapeau t somme k aj y, où k (m-1) 2 et les poids sont donnés par a, dots, ak. Il est important que les poids totalisent à un et qu'ils soient symétriques de sorte que aj a. Le m-MA simple est un cas particulier où tous les poids sont égaux à 1m. Un avantage majeur des moyennes mobiles pondérées est qu'elles donnent une estimation plus souple du cycle tendanciel. Au lieu des observations entrant et sortant du calcul au poids total, leurs poids sont augmentés lentement puis diminués lentement, ce qui donne une courbe plus lisse. Certains ensembles spécifiques de poids sont largement utilisés. Certaines d'entre elles sont données dans le tableau 6.3.2.1 Modèles de moyenne mobile (modèles MA) Les modèles de séries chronologiques connus sous le nom de modèles ARIMA peuvent inclure des termes autorégressifs ou des termes de moyenne mobile. Dans la semaine 1, nous avons appris un terme autorégressif dans un modèle de série chronologique pour la variable x t est une valeur décalée de x t. Par exemple, un terme autorégressif de retard 1 est x t-1 (multiplié par un coefficient). Cette leçon définit les termes moyens mobiles. Un terme moyen mobile dans un modèle de séries chronologiques est une erreur passée (multipliée par un coefficient). Soit (wt overet N (0, sigma2w)), ce qui signifie que les w t sont identiquement, indépendamment distribués, chacun avec une distribution normale ayant une moyenne 0 et la même variance. Le modèle de moyenne mobile du 1er ordre, noté MA (1) est (xt mu wt theta1w) Le modèle de moyenne mobile du 2 e ordre, noté MA (2) est (xt mu wt theta1w theta2w) , Désignée par MA (q) est (xt mu wt theta1w theta2w points thetaqw) Note. De nombreux manuels et programmes logiciels définissent le modèle avec des signes négatifs avant les termes. Cela ne modifie pas les propriétés théoriques générales du modèle, bien qu'il renverse les signes algébriques des valeurs des coefficients estimés et des termes (non carrés) dans les formules pour les ACF et les variances. Vous devez vérifier votre logiciel pour vérifier si des signes négatifs ou positifs ont été utilisés pour écrire correctement le modèle estimé. R utilise des signes positifs dans son modèle sous-jacent, comme nous le faisons ici. Propriétés théoriques d'une série temporelle avec un modèle MA (1) Notez que la seule valeur non nulle dans l'ACF théorique est pour le lag 1. Toutes les autres autocorrélations sont 0. Ainsi, un échantillon ACF avec une autocorrélation significative seulement au décalage 1 est un indicateur d'un modèle MA (1) possible. Pour les étudiants intéressés, les preuves de ces propriétés sont une annexe à ce document. Exemple 1 Supposons qu'un modèle MA (1) soit x t 10 w t .7 w t-1. Où (wt dépasse N (0,1)). Ainsi, le coefficient 1 0,7. L'ACF théorique est donné par un tracé de cette ACF. Le graphique qui vient d'être montré est l'ACF théorique pour un MA (1) avec 1 0,7. En pratique, un échantillon ne fournira habituellement qu'un tel motif clair. En utilisant R, nous avons simulé n 100 échantillons en utilisant le modèle x t 10 w t .7 w t-1 où w t iid N (0,1). Pour cette simulation, un schéma chronologique des données de l'échantillon suit. Nous ne pouvons pas dire beaucoup de cette intrigue. L'échantillon ACF pour les données simulées suit. Nous observons un pic au décalage 1 suivi par des valeurs généralement non significatives pour les décalages au-delà de 1. Notez que l'échantillon ACF ne correspond pas au modèle théorique du MA (1) sous-jacent, c'est-à-dire que toutes les autocorrélations Un échantillon différent aurait un ACF d'échantillon légèrement différent indiqué ci-dessous, mais aurait probablement les mêmes caractéristiques générales. Propriétés théoriques d'une série temporelle avec un modèle MA (2) Pour le modèle MA (2), les propriétés théoriques sont les suivantes: Noter que les seules valeurs non nulles dans l'ACF théorique sont pour les lags 1 et 2. Les autocorrélations pour les décalages supérieurs sont 0 . Ainsi, un échantillon ACF avec des autocorrélations significatives aux décalages 1 et 2, mais des autocorrélations non significatives pour des décalages plus élevés indique un modèle MA (2) possible. Iid N (0,1). Les coefficients sont 1 0,5 et 2 0,3. Parce qu'il s'agit d'une MA (2), l'ACF théorique aura des valeurs non nulles uniquement aux lags 1 et 2. Les valeurs des deux autocorrélations non nulles sont: Un tracé de la théorie ACF suit. Comme presque toujours le cas, les données d'échantillon ne se comporteront pas aussi parfaitement que la théorie. Nous avons simulé n 150 échantillons pour le modèle x t 10 w t .5 w t-1 .3 w t-2. Où w t iid N (0,1). Le tracé de la série chronologique des données suit. Comme avec le graphique de la série temporelle pour les données d'échantillon MA (1), vous ne pouvez pas en dire beaucoup. L'échantillon ACF pour les données simulées suit. Le modèle est typique pour les situations où un modèle MA (2) peut être utile. Il y a deux pointes statistiquement significatives aux écarts 1 et 2, suivies des valeurs non significatives pour les autres retards. Notez qu'en raison de l'erreur d'échantillonnage, l'ACF de l'échantillon ne correspondait pas exactement au modèle théorique. ACF pour les modèles General MA (q) Une propriété des modèles MA (q) en général est qu'il existe des autocorrélations non nulles pour les q premiers lags et autocorrélations 0 pour tous les retards gt q. Non-unicité de la connexion entre les valeurs de 1 et (rho1) dans MA (1) Modèle. Dans le modèle MA (1), pour toute valeur de 1. La valeur réciproque 1 1 donne la même valeur pour. Par exemple, utilisez 0,5 pour 1. Puis utilisez 1 (0,5) 2 pour 1. Vous obtiendrez (rho1) 0,4 dans les deux cas. Pour satisfaire une restriction théorique appelée invertibilité. Nous limitons les modèles MA (1) à des valeurs dont la valeur absolue est inférieure à 1. Dans l'exemple donné, 1 0,5 sera une valeur de paramètre admissible, alors que 1 10,5 2 ne le sera pas. Invertibilité des modèles MA Un modèle MA est dit inversible s'il est algébriquement équivalent à un modèle d'ordre infini convergent. En convergeant, nous voulons dire que les coefficients AR décroissent à 0 lorsque nous retournons dans le temps. Invertibilité est une restriction programmée dans le logiciel de séries temporelles utilisé pour estimer les coefficients de modèles avec des termes MA. Ce n'est pas quelque chose que nous vérifions dans l'analyse des données. Des informations supplémentaires sur la restriction d'inversibilité pour les modèles MA (1) sont données en annexe. Théorie avancée. Pour un modèle MA (q) avec un ACF spécifié, il n'existe qu'un seul modèle inversible. La condition nécessaire à l'inversibilité est que les coefficients ont des valeurs telles que l'équation 1- 1 y-. - q y q 0 a des solutions pour y qui tombent en dehors du cercle unitaire. Code R pour les exemples Dans l'exemple 1, nous avons représenté l'ACF théorique du modèle x t 10 w t. 7w t-1. Puis a simulé n 150 valeurs à partir de ce modèle et a représenté graphiquement la série chronologique de l'échantillon et l'échantillon ACF pour les données simulées. Les r commandes utilisées pour tracer l'ACF théorique sont: acfma1ARMAacf (mac (0.7), lag. max10) 10 lags de ACF pour MA (1) avec theta1 0.7 lags0: 10 crée une variable nommée lags qui va de 0 à 10. plot Abline (h0) ajoute un axe horizontal à la trame La première commande détermine l'ACF et la stocke dans un objet (a0) Nommée acfma1 (notre choix de nom). La commande plot (la 3ème commande) trace des retards par rapport aux valeurs ACF pour les lags 1 à 10. Le paramètre ylab étiquette l'axe y et le paramètre principal place un titre sur la trame. Pour voir les valeurs numériques de l'ACF, utilisez simplement la commande acfma1. La simulation et les parcelles ont été effectuées avec les commandes suivantes. (X, typeb, mainSimulated MA (1) data) xcarima. sim (n150, list (mac (0.7))) Simule n 150 valeurs de MA (1) xxc10 ajoute 10 pour faire la moyenne 10. La simulation (X, xlimc (1,10), mainACF pour des données d'échantillon simulées) Dans l'exemple 2, nous avons représenté graphiquement l'ACF théorique du modèle xt 10 wt.5 w t-1 .3 w t-2. Puis a simulé n 150 valeurs à partir de ce modèle et a représenté graphiquement la série chronologique de l'échantillon et l'échantillon ACF pour les données simulées. Les ordres R utilisés étaient: ACFma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 tracé (lags, acfma2, xlimc (1,10), ylabr, typeh, ACF principal pour MA (2) avec theta1 0,5, (X, typeb, principale série MA (2) simulée) acf (x, xlimc (1,10), x2) (1) Pour les étudiants intéressés, voici des preuves des propriétés théoriques du modèle MA (1). Lorsque x 1, l'expression précédente 1 w 2. Pour tout h 2, l'expression précédente 0 (x), x, x, x, x, x, La raison en est que, par définition de l'indépendance du wt. E (w k w j) 0 pour tout k j. En outre, parce que w t ont une moyenne 0, E (w j w j) E (w j 2) w 2. Pour une série chronologique, appliquer ce résultat pour obtenir l'ACF ci-dessus. Un modèle inversible MA est celui qui peut être écrit comme un modèle AR d'ordre infini qui converge de sorte que les coefficients AR convergent vers 0 alors que nous avançons infiniment dans le temps. Bien démontrer l'inversibilité pour le modèle MA (1). On substitue alors la relation (2) pour w t-1 dans l'équation (1) (3) (zt wt theta1 (z - theta1w) wt theta1z - theta2w) Au temps t-2. L'équation (2) devient Nous substituons alors la relation (4) pour w t-2 dans l'équation (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) Si nous devions continuer On notera cependant que si 1 1, les coefficients multipliant les décalages de z augmentent (infiniment) de la taille à mesure que l'on se déplace vers l'arrière temps. Pour éviter cela, nous avons besoin de 1 lt1. C'est la condition pour un modèle inversible MA (1). Infinite Order MA model Dans la semaine 3, voyez bien qu'un modèle AR (1) peut être converti en un modèle d'ordre infini MA: (xt - mu wt phi1w phi21w points phik1 w dots sum phij1w) Cette sommation des termes de bruit blanc passé est connue Comme la représentation causale d'un AR (1). En d'autres termes, x t est un type spécial de MA avec un nombre infini de termes revenant dans le temps. C'est ce qu'on appelle un ordre infini MA ou MA (). Un ordre fini MA est un ordre infini AR et tout ordre fini AR est un ordre infini MA. Rappelons à la semaine 1, nous avons noté qu'une exigence pour un AR stationnaire (1) est que 1 lt1. Calculons le Var (x t) en utilisant la représentation causale. Cette dernière étape utilise un fait de base sur les séries géométriques qui nécessite (phi1lt1) sinon la série diverge. NavigationAutoregressive Moving-Average Simulation (First Order) La Demonstration est définie de telle sorte que la même série aléatoire de points est utilisée quelle que soit la façon dont les constantes et sont variées. Cependant, lorsque le bouton quotrandomizequot est pressé, une nouvelle série aléatoire sera générée et utilisée. Garder la série aléatoire identique permet à l'utilisateur de voir exactement les effets sur la série ARMA de changements dans les deux constantes. La constante est limitée à (-1,1) parce que la divergence de la série ARMA résulte quand. La démonstration est uniquement pour un processus de premier ordre. Des termes AR supplémentaires permettraient de générer des séries plus complexes, tandis que des termes MA additionnels augmenteraient le lissage. Pour une description détaillée des processus ARMA, voir, par exemple, G. Box, G. M. Jenkins, et G. Reinsel, Time Series Analysis: Forecasting and Control. 3ème éd. Englewood Cliffs, NJ: Prentice-Hall, 1994. LIENS CONNEXES


No comments:

Post a Comment